1. 业奇农业网 > 技术 >

农药残留物的分析方法

国外医学卫生学分册

农药残留物的分析方法

1998年 第25卷 第3期

食物中农药残留分析方法的研究进展

中国预防医学科学院营养与食品卫生研究所 (北京 100050)

赵云峰综述 陈建民1 王绪卿审校

摘要 本文综述了近年来农药残留分析的前处理技术和测定方法的研究进展,着重介绍固相萃取法、凝胶渗透色谱法和超临界流体萃取法等前处理技术及气相色谱-质谱法、液相色谱-质谱法、超临界流体色谱法等色谱测定方法以及毛细管电泳和生物技术在农药残留分析中的应用。

关键词 食物 农药残留 多残留分析方法

食品的农药残留分析是在复杂的基质中对目标化合物进行鉴别和定量。由于食品中农药残留水平一般在mg/kg~μg/kg之间,因此要求分析方法灵敏度高、特异性强。对于未知农药施用史的食物样品,经常采用多组分残留分析的方法。由于各类食物样品组成成分复杂,而且不同农药品种的理化性质存在差异,因而没有一种多组分残留分析方法能够覆盖所有的农药品种。

近年来,农药残留分析方法趋向于选择性强、分辨率高和检测限低以及操作简便。主要表现在由单一种类农药多残留分析向多品种农药多残留分析发展,而且对农药的代谢物、降解物以及轭合物的残留分析给予了更多的关注[1]。本文简要综述近几年来农药残留分析技术及方法学的进展。

1 食物中农药残留的特点及样品前处理技术食物样品组成复杂,基质成分与目标物含量相差悬殊,且存在农药的同系物、异构体、降解产物、代谢产物以及轭合物的影响。由于环境的迁移作用,环境中残留的各种化学污染物也可能在农作物组织中蓄积,从而增加了食品农药残留分析的难度。农药残留测定之前要有适合于各种食品和目标物理化性质的萃取、净化、浓缩等预处理步骤,这些预处理过程往往在分析中起着主要作用。食物样品中农药提取、净化等前处理方法有其特殊性,对于不同性质样品中的不同目标物需要采用不同的前处理技术。

食品农药残留分析中,食物样品的净化要尽可能的除去与目标物同时存在的杂质,以减少色谱图中的干扰峰,同时避免杂质对色谱柱和检测器的污染。食物样品的净化,尤其是含脂质较多的食物样品净化,一直是分析工作者研究的重点,除采用常规的吸附柱分离、液-液分配、共沸蒸馏等净化措施外,更多的采用现代分离分析技术。

在农药残留分析技术发展的历程中,对气相色谱(gc)和液相色谱(lc)等各种仪器的分析速度、分辨能力和自动化程度进行了大量的研究,相比之下,对样品的制备技术关注不够。在很长的时间内,一直沿用经典的索氏提取、液-液分配、florisil、硅胶、硅藻土及氧化铝柱色谱、共沸蒸馏等技术,尽管这些技术不需要昂贵的设备和特殊仪器,但却是整个分析过程中最费时费力、最容易引起误差的环节,且大量有机溶剂的使用,造成了对环境的污染。进入90年代后,样品萃取净化技术有了较快的发展,最受普遍重视的如固相萃取法(spe)、凝胶渗透色谱法(gpc)及超临界流体萃取法(sfe),得到不断改进和应用。为此,样品前处理技术的研究成为分析化学领域中最为活跃的前沿课题之一[2]。

1.1 固相萃取法自美国waters公司的sep-pak投放市场后,固相萃取法(spe)技术取得很大进步,各种c8、c18、腈基、氨基和其它特殊填料的微柱相继得到应用。schenck[4]用florisil微柱净化,测定食物中有机氯农药(ocs)残留;wan[5]简化了植物油中ocs残留分析时硅胶柱的净化方法,减少了有机溶剂的使用;armishaw[6]比较了动物脂肪ocs残留测定时,gpc、吹扫共馏、florisil柱色谱的净化;bentabol[7]用半制备c18柱分离食用油中的ocs和有机磷农药(ops)。gillespie[8]用多柱spe净化植物油和牛脂中的ocs及ops,油或脂质样品用己烷溶解后,首先经diatoma-ceousearth(extrelutqe)柱和c18键合硅胶(ods)微柱处理,洗脱液分为两部分,一份浓缩后,丙酮溶解,用gc-火焰光度检测器(fpd)测定ops,另一份经氧化铝微柱处理,进一步除去脂质,用gc-电子捕获检测器(ecd)测定ocs。

1.2 凝胶渗透色谱法凝胶渗透色谱法(gpc)是一种快速的净化技术,应用于农药残留分析中脂类提取物与农药的分离,是含脂类食物样品农药残留分析的主要净化手段。stienwandter[9]总结了凝胶色谱在农药残留分析中的应用;李洪波[10]用交联聚苯乙烯凝胶(ngx-01)净化食物样品中ops;李怡[11]用bio-beadss-x3净化乳品中氨基甲酸酯类农药(nmcs)。chamberlain[12]采用10%乙酸乙酯和石油醚洗脱,以bio-beadss-x3解决了脂肪和油样的分离。hong[13]用溶剂提取,bio-beadss-x3净化,gc-ecd-氮磷检测器(npd)测定大豆和大米样品25种农药,并用gc-ms-选择离子监测(sim)确证。florisil、氧化铝及硅胶柱主要用于非脂质食品净化处理,采用常规的净化方法,不能保证极性农药ops在脂质性食品中的定量回收。sannino[14]用bio-beadss-x3的gpc净化方法,分析了7个脂质性食品中39种ops及其代谢产物,并进一步进行gc-ms-sim确证和定量。hop-per[15]用gpc净化,gc测定了谷物中ops、ocs及拟除虫菊酯;holstege[16]采用凝胶渗透色谱法净化,进行了43种ops、17种ocs及11种nmcs多残留分析。

1.3 超临界流体萃取法继超临界流体色谱(sfc)之后,90年代出现了超临界流体萃取技术(sfe)。常规分析时,需要用有机溶剂提取样品,提取的样品量为50~100g,在进行溶剂浓缩的过程中,可能使易挥发的农药损失或使某些农药降解。sfe的样品用量少,样品提取在低温下进行,避免了农药的损失及降解,大大提高了分析方法的可靠性,并使得分析时间缩短,排除了有机溶剂的污染。lehotay[17]建立了食品中农药多残留分析的sfe方法;snyder[18]在ocs和ops测定中,比较了用3%甲醇为改性剂的co2净化与索氏提取法的效率。对于含水量高的样品,sfe的使用受到限制,为了提高sfe的使用效率,采用冻干样品和混合样品,以吸收水分。valverde-garcia[19]用硫酸镁为干燥剂吸收样品中的水分,以sfe提取甲胺磷;用无水硫酸镁制备蔬菜样品(硫酸镁∶样品=5∶7),用sfe提取辣椒和西红柿中非极性和中极性农药。sfe是食品农药多残留分析中具有发展前景的新技术,可以替代溶剂提取方法,但在常规分析中还未得到广泛应用。

2 测定方法色谱法仍是农药残留分析的常用方法。对于挥发性农药常用gc测定;对于挥发性差、极性和热不稳定性的农药则采用lc测定。目前,在农药残留分析中使用的方法有gc、高效液相色谱法(hplc)、气相色谱-质谱法(gc-ms)、液相色谱-质谱法(lc-ms)、sfc及毛细管电泳法(ce)和酶联免疫吸附测定法(elisa)等。fodor-csorba[20]综述了食物中农药分析的色谱方法,概括了薄层色谱法(tlc)、gc、sfc及hplc在食物样品分析中的应用;leim[21]总结了脂类食物中有机农药的分析方法;sharp[22]总结了谷物中ops、拟除虫菊酯和nmcs的提取、净化及测定方法;torres[23]总结了水果、蔬菜中农药残留的测定方法;宫田晶弘[24]用gc、gc-ms-电子轰击源(ei)及gc-离子阱质谱(itms)-化学电离源(ci)测定苹果、香蕉、小麦及大米中的41种ops、23种nmcs,并对三种方法进行了比较。色谱法在农药残留分析中发挥了重要的作用。

2.1 gc法和gc-ms法以非极性或弱极性为固定相的毛细管柱gc得到广泛使用,取代了传统的填充柱gc。gc-ms和gc-ms-ms联用技术日臻成熟,质谱法已成为农药残留分析的常用方法。由于串联质谱(ms-ms)可以减少干扰物的影响,提高仪器的灵敏度,所以ms-ms是化合物结构分析及确证的有效手段。由于gc-离子阱的串联质谱用于农药残留分析时,可得到fg水平的灵敏度,所以离子阱技术将是农药残留分析发展的趋势。lehotay[25]用sfe提取,gc-itms分析了水果、蔬菜中ocs、ops、氨基甲酸酯类农药(mcs)、拟除虫菊酯及其它农药,共46个品种。py-lypiw[26]用gc-单离子检测(msd)分析了18种ocs,最低检出量为10μg/kg;valaerd-garcia[27]用gc-msd检测了蔬菜中噻嗪酮的残留;fillion[28]用乙腈提取水果、蔬菜样品,盐析分层,活性炭柱净化,用gc-msd分析了189种农药残留,并用hplc的荧光检测法测定了10种氨基甲酸酯农药残留。hogendoorn[29]用改良方法分析了2000个水果、蔬菜样品中125种农药。miyahara[30]用sfe净化,gc-itms测定了蔬菜中五氯硝基苯(pcnb)及代谢物的残留;采用sfe与gc-itms联用检测蔬菜中六氯苯(hcb)的残留。但是,gc-itms用于常规的定量测定还有待进一步发展。

2.2 hplc法及lc-ms法对于受热易分解或失去活性的物质,不能直接或不适合用gc分析。正是由于许多有机化合物的强极性、热不稳定性、高分子量和低挥发性等原因,从而推动了液相色谱技术的进步。

农药残留分析中,通常使用c8及c18反相高效液相色谱法,而以硅胶、腈基、氨基为极性键合相的色谱柱则用于特定的分析;短柱或小口径柱可提高分析速度。除采用固定波长或可变波长的紫外检测器外,二极管矩列紫外检测器和质谱检测器可用于结构鉴定。

hplc与sfe联用可以提高分析方法的选择性,并使净化与分析过程结合,减少中间步骤造成被分析组分的丢失。hplc与ms联用研究起步于70年代,与gc-ms相比,lc-ms的衔接更为复杂,目前lc-ms联用已出现多种接口方式,如电喷雾接口(es)、热喷雾接口(ts)、离子喷雾接口(is)、大气压化学电离接口(apci)以及粒子束接口(pb)。lc与快原子轰击质谱(fab-ms)以及傅立叶变换红外光谱联用技术(ftir)在农药残留分析中也得到应用。

hplc和lc-ms广泛应用于不易挥发及热不稳定化合物的分析,是农药残留定性、定量分析的有效手段,尤其是氨基甲酸酯农药(mcs)的检测。yang[31]总结了nmcs残留分析的进展;krause[32]建立了氨基甲酸酯的荧光测定法,食物样品用甲醇提取,乙腈-二氯甲烷液液分配,活性炭-celite柱净化,反相lc分离,邻苯二醛衍生,检测限为5~50μg/kg,结果用ms确证。seiber[33]采用perfluorracyl衍生,分析了谷物中的氨基甲酸酯;lau[34]用trifluoroacetyl衍生分析了谷物中的混杀威;bakowski[35]用heptafluo-robutyryl衍生,用gc-eims测定了肝组织中10种苯基-n-甲基氨基甲酸酯;ali[36]对牛肉、猪肉和家禽组织的氨基甲酸酯进行分析。liu[37]等用lc-ms对水果、蔬菜中的涕灭威、增效砜等19种农药进行检测,检测限为0.025~1mg/kg。newsome[38]比较了lc-apci-ms和lc-柱后衍生荧光法测定食品中nmcs,在10~100μg/kg范围内,两种检测器的检测结果良好,但由于两种均为非特异性检测器,都存在基质干扰,为了准确测定含量,应使用高分辨的ms进行确证。

2.3 sfc方法sfc是以超临界流体为流动相的色谱方法。超临界流体既具有液体的强溶解性能,适合于分离挥发性差和热不稳定的物质;又具有气体的低粘度和高扩散性能,传质速度快,使得分析速度提高;同时,sfc可以使用gc或hplc的检测器以及与ms、傅立叶变换红外光谱仪(ftir)联用。毛细管超临界流体色谱(csfc)的进展,促进了sfc技术的进步。csfc-ms是近年来发展的联用技术,由于csfc克服了gc和lc的不足且具有二者的优点,所以csfc-ms联用较gc-ms和lc-ms联用有更多的优越性。csfc-ms主要用于大分子量、热不稳定的复杂混合物分析,尤其对热不稳定的物质,不能用gc直接分析,而lc的选择性和灵敏度又不够,如采用csfc-ms,可较方便地分离检测。农药中含有s、p等杂原子时,极性较强,用gc和lc难于分析,痕量分析尤为困难。采用cs-fc结合选择性强的检测器,如fpd、npd、ecd等,是农药痕量分析的理想方法。在co2中添加1%甲醇作为改性剂,使极性农药得到很好地分离,消除了色谱峰的拖尾。但是农药残留分析中,sfc主要用于非极性或弱极性的物质,如何分析极性物质,将是今后的研究方向[39]。

2.4 tlc方法tlc无需特殊设备,简便易行,可同时分析多个样品,多用于复杂混合物的分离和筛选。tlc除用特殊的显色剂观察斑点颜色和用rf值定性外,与其它技术的联用不仅可以定性,而且可对样品中被分离的一种或多种成分进行定量分析。80年代发展起来的高效薄层色谱法(hptlc)与扫描技术结合,是一种易于建立和掌握的半定量技术。欧盟国家采用自动化多通道展开技术,用hptlc定量筛选了饮水中256种农药残留。

2.5 ce方法由于ce具有分离效率高、快速、样品用量少等特点,近年来得到了迅速发展,各种分离模式相继建立,高性能的商品仪器不断推向市场。对于无电荷的分子,开发了胶束电动色谱法(mekc),拓宽了ce的应用范围。毛细管电泳与质谱联用(ce-ms)可用于谷物和其它基质中带电荷基团的农药及其代谢物残留检测。ce可与原子分光光度法联用[2],如与原子吸收分光光度计(aas)、电感耦合等离子体-原子发射光谱仪(icp-aes)和icp-ms联用。cancalon[40]综述了ce和ce-ms在农药残留分析中的应用。

2.6 生物技术生物技术在农药残留分析中的应用不断增加,尤其是乳制品工业[41]。生物技术包括免疫测定法、生物测定法和生物传感器技术及免疫亲和色谱法。免疫测定法取决于抗体与底物的相互作用,目标物与抗体结合后,酶促反应产生颜色变化,用比色法测定目标物浓度。kramer[42]总结了生物传感器和免疫传感器的构件、技术特点及其应用。

抗体与抗原的特异结合为农药残留分析提供了技术保证,许多市售试剂盒的应用,使免疫测定成为各类农药残留检测的有效手段,使农药残留分析时间缩短,操作人员劳动负荷量减少。免疫方法常与其它技术联用[43],如elisa与传统的提取和净化方法、sfe、hplc及gc-ms联用;免疫亲和色谱法与ms联用以及在机器人辅助下自动的免疫化学方法都有应用报道。有报道[41]用sfe-elisa分析了大麦中杀螟硫磷、甲基毒死蜱及甲基嘧啶磷;用hplc-elisa测定水果、蔬菜中噻菌灵。由于免疫分析成本低、快速、可靠,且传感器灵敏度高,并有自动化装置,因而广泛用于农药残留的监测及人与环境接触等研究。

3 结 语

随着各种新技术的应用,农药残留分析方法日趋系统化、规范化,并向小型化、自动化方向发展。同时,由于在线联用技术可避免样品转移的损失,减少各种人为的偶然误差,因此将是农药残留分析方法研究的重点。

农药残留检测仪的概述

甲维盐、吡虫啉、虫酰肼、马拉硫磷、灭幼脲、喹硫磷、啶虫脒、噻嗪酮、异丙威和辛硫磷这10种药剂都属于常见农药,其中甲维盐具有触杀作用,害虫接触后会停止进食,2-4天后死亡,虽然杀虫速度慢,但是持效期长。

一、十种常用农药名称

1、甲维盐

(1)甲维盐比阿维菌素杀虫、杀螨、杀线虫活性提高了10-100倍,杀虫谱变宽,具有触杀作用。

(2)害虫接触到甲维盐后,会停止进食,2-4天后死亡。

(3)虽然甲维盐杀虫速度较慢,但是持效期长,害虫为10-15天,螨虫为15-25天。

(4)甲维盐对于作物无内吸性能,但能渗入表皮组织,可防治鳞翅目害虫、螨类,鞘翅目及同翅目害虫,且不易让害虫产生抗药性。

(5)甲维盐在推荐使用剂量下对所有作物高度安全,在土壤中易降解。

2、吡虫啉

(1)吡虫啉属于烟碱类,具有触杀、胃毒和内吸的作用,害虫接触后会麻痹死亡,速效性好。

(2)使用吡虫啉1天就有较高的防效,残留期长达约25天,在温度高时使用该药剂的效果好。

(3)吡虫啉主要防治刺吸式口器害虫,易被作物吸收。

3、虫酰肼

(1)虫酰肼能促进鳞翅目幼虫蜕皮,和其他抑制幼虫蜕皮的药剂作用机理相反。

(2)虫酰肼对于高龄和低龄的幼虫均有效,害虫接触药剂6-8小时就会停止取食,3-4天后开始死亡。

(3)虫酰肼无药害、无残留药斑,对作物安全。

4、马拉硫磷

(1)马拉硫磷主要防治咀嚼式口器和刺吸式口器害虫,具有触杀、胃毒和渗透作用,残效期短。

(2)在高温时使用马拉硫磷的效果好,在低温环境使用时,可适当提高施药量或用药浓度。

(3)马拉硫磷易对高粱、瓜豆类和梨、葡萄、樱桃等品种发生药害,谨慎使用;通常在采果前10天就应停用该药剂。

5、灭幼脲

(1)建议在初龄幼虫期使用灭幼脲,虫龄越大,防效越差,对成虫无效。

(2)灭幼脲能抑制几丁质合成,有胃毒作用,能侵入昆虫和卵的表皮产生效果,但无内吸作用。

(3)灭幼脲的药效期长达30天以上,而且耐雨水冲刷,对天敌安全。

(4)灭幼脲对鳞翅目以及蚊蝇幼虫活性高,害虫接触药剂后会在3天后开始死亡,5天达到死亡高峰。

6、喹硫磷

(1)喹硫磷具有杀虫、杀螨、胃毒和触杀作用。

(2)虽然喹硫磷无内吸和熏蒸性能,但却有良好的渗透性,有一定杀卵作用。

(3)常用喹硫磷来防治咀嚼和吮吸害虫,在植物上降解速度快,残效期短。

7、啶虫脒

(1)啶虫脒属于氯化烟碱吡啶类药剂,具有触杀和胃毒作用,有很好的内吸活性。

(2)常用啶虫脒来防治半翅目中的蚜虫、叶蝉、粉虱、蚧壳虫和鳞翅目中的潜叶蛾、小食虫以及鞘翅目的天牛、蓟马等各类害虫。

(3)啶虫脒颗粒剂用在土壤处理上,能防治地下害虫。

(4)啶虫脒具有效果快、持效期长的特点,持效期可达20天左右。

8、噻嗪酮

(1)噻嗪酮能抑制几丁质合成和干扰新陈代谢,通常用药后的3-7天才能看见效果,虽然对于成虫没有直接杀伤力,但可缩短其寿命,减少产卵量,产出的也多是不育卵。

(2)噻嗪酮对半翅目的飞虱、叶蝉、粉虱及介壳虫类害虫有良好防治效果,药效期长达30天以上。

(3)不可用毒土法来使用噻嗪酮,也不宜将它直接接触白菜、萝卜,易产生药害。

9、异丙威

(1)异丙威具有触杀作用,有一定的渗透和传导活性,速效性强。

(2)异丙威除了可以防治水稻飞虱和叶蝉之外,还能兼冶蓟马。

(3)异丙威不能和敌稗同时使用,若要使用需间隔10天以上。

(4)异丙威易对芋产生药害,不可使用。

10、辛硫磷

(1)辛硫磷主要以触杀和胃毒作用为主,无内吸作用,具有杀虫谱广,击倒力强的特点。

(2)辛硫磷除了对磷翅目幼虫有效之外,对虫卵也有一定的杀伤作用。

(3)建议在夜晚使用辛硫磷,因为辛硫磷对光敏感。

(4)通常辛硫磷的残留期短,但在土中的残留期很长,宜防治地下害虫。

(5)黄瓜、菜豆、高粱对辛硫磷敏感,不易使用。

(6)在玉米田只可使用辛硫磷颗粒剂来防治玉米螟,不可使用喷雾。

二、蔬菜检测农药残留标准

1、首先根据农药的毒性、农产品中农药的残留量、以及食物消费结构等资料,然后再利用风险评估技术计算得出的安全值就是农药残留的标准。

2、一般在制定农药残留的标准时,会以最大的风险为基础,考虑物种差异以及孕妇和儿童的安全后,再增加100倍的安全系数从而就出现了农药残留的标准值。

3、比如滴滴涕杀虫剂的残留标准为0.1mg、六六六杀虫剂的残留标准为0.2mg、倍硫磷杀虫剂的残留标准为0.05mg,而在蔬菜上不得检查出有甲拌磷杀虫剂的残留物。

农药残留是指农药使用后残存于环境、生物体和食品中的衍生物、代谢物、农药母体、降解物和杂质的总称。造成蔬菜农药残留量超标的主要农药是一些国家禁止在蔬菜生产中使用的有机磷农药和氨基甲酸酯类农药,如对硫磷、甲胺磷、甲拌磷、氧化乐果、甲基对硫磷等。食用农药残留超标的蔬菜,对人体的危害非常严重,容易引起急性中毒,甚至死亡。

控制农药残留对人体的危害,最为有效的方法之一是加强对食品中农药残留检测的力度。

国际上用于农药残留快速检测方法种类繁多,究其原理来说主要分为两大类:高效色谱快速检测法和生化测定法。 高效液相色谱法能够对大多数农药进行较为精确的定量检测,但是耗时太长,检测费用过高,限制了其发展。生化检测法是利用生物体内提取出的某种生化物质进行的生化反应来判断农药残留是否存在以及农药污染情况,在测定时样本无需经过净化,或净化比较简单,检测速度快。生化检测法中又以酶抑制法和酶联免疫法应用最为广泛。

酶抑制率法利用了胆碱酯酶对有机磷和氨基甲酸酯类农药的特异性结合原理,因此检出限非常低。已被列为国家推荐标准方法(GB/T 5009.199-2003)。由于酶抑制率法具有快速、灵敏、操作简便、成本低廉等特点,已成为对果蔬中有机磷和氨基甲酸酯类农药残留进行现场快速定性初筛检测的主流技术之一,得到了越来越广泛的应用。 蔬菜样品的抑制率 蔬菜品质 评价和建议 0%< 检测抑制率<15 % 无污染蔬菜 基本上可以放心出口 15%< 检测抑制率<30 % 绿色蔬菜 处理和检验后可以出口 30%< 检测抑制率<50 % 无公害蔬菜 可以安全食用 50%< 检测抑制率<100 % 有农药污染蔬菜 不能安全食用 随着人们生活品质的不断提高,健康已逐渐成为人们关注的焦点。但是,水果蔬菜在生长过程中不知经过了多少次的农药杀虫,使农药及其他有害物质,越来越多地残留在蔬菜、水果等食品上,严重威胁着人们的健康。人们在不知不觉中吃着含有残留农药和有害物质的食物,不能排出人体的,就会被滞留在人体内,直接危害人体健康,造成内脏硬化、坏死、免疫功能下降和发育不良等症状。农药残留检测仪,能在几分钟内鉴别出果蔬中是否有残余农药,让人们能够安心的享用健康绿色食品。

本文由用户上传,如有侵权请联系删除!转转请注明出处:https://nongye.s666.cn/js/5_657840923.html