1. 业奇农业网 > 百科 >

大小瓦在发动机里起什么作用?

大小瓦(轴瓦)在发动机里起冷却轴承、保证液态润滑的作用。滑动轴承工作时,轴瓦与转轴之间要求有一层很薄的油膜起润滑作用。如果润滑不良,轴瓦与转轴之间就存在直接的摩擦,摩擦会产生很高的温度,虽然轴瓦是由特殊的耐高温合金材料制成,但发生直接摩擦产生的高温仍然足以将其烧坏。

大小瓦在发动机里起什么作用?

厚壁轴瓦可以铸造,为改善摩擦性能,可在轴瓦内表面浇注一层轴承合金(称为轴承衬)。为使轴承合金和轴瓦贴附得好,常在轴瓦内表面上制出各种形式的榫头、凹沟或螺纹。薄壁轴瓦可以用双金属板连续轧制等工艺大量生产。粉末冶金将粉末状的铁或铜等基本材料与石墨混合,再压制烧结成形。其孔隙可贮存润滑油。

扩展资料

轴瓦材料主要有聚合物、碳石墨和特种陶瓷三大类:

1、聚合物

聚合物具有质轻、绝缘、减摩、耐磨、自润滑、耐腐蚀、成型工艺简单、生产效率高等特点。和金属材料比较,它们的摩擦学性能对环境温度和湿度敏感、与粘弹性有关的特性显著,因而轴瓦与轴颈的间隙较大。又因其机械强度低、弹性模量小,对润滑油的吸附性差,而限制了轴瓦的工作转速和压力值。

2、碳-石墨

碳-石墨材料的轴瓦可在苛刻环境中使用。其中石墨含量愈多,材料愈软,摩擦系数愈小。

碳石墨一般导电性好、耐热、耐磨、有自润滑性、高温稳定性好,耐化学腐蚀能力强,热导率比聚合物高,线胀系数小。在大气和室温条件下与镀铬表面的摩擦因数和磨损率都很低。

3、陶瓷

陶瓷是以无机非金属天然矿物或人造化合物为原料,经粉碎、成形和高温烧结而成的,由无数无机非金属小晶体和玻璃相组成的非金属材料。

以无机非金属天然矿物,如粘土、长石、石英等为原料制成的是传统陶瓷;以人造化合物为原材料制成的是特种陶瓷。机械工程采用的陶瓷一般是以氧化铝、氧化镁、氧化锆、氧化铅、氧化钛、碳化硅、碳化硼、氮化硅、氮化硼等人造化合物为原料制作的特种陶瓷。

要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。

一、飞行的主要组成部分及功用

到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:

1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。

2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。

4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。

5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

二、飞机的升力和阻力

飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理:

流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。

伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。

飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。

机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。

飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。

2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。

3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。

4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。

以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。

三、影响升力和阻力的因素

升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。

1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。

2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。

3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大.

揪错 ┆

本文由用户上传,如有侵权请联系删除!转转请注明出处:https://nongye.s666.cn/bk/6_6572002136.html