什么是教学设备
石家庄加鹏科技有限公司是专业从事电子电器教学设备的研发、生产、销售的高新技术企业。公司拥有一批高素质的科研人才队伍,每位技术人员都具有良好的专业知识背景,多年的实战工作积累了丰富的设计、开发经验。我公司主要产品有实验系列及实训系列两大类几十个品种:
实验系列产品:电工技术实验台、电子技术实验台、电力电子技术实验台、电机拖动技术实验台、变频器及PLC可编程控制器实验台、过程控制实验装置、电力系统继电保护实验台、单片机综合开发实验台、测控技术及传感器等实验装置或实验箱。
实训系列产品:电工电子实训装置、机床电器技能考核实训装置、维修电工实训装置、电机拖动实训装置、电子工艺实训台、电子焊接实训台、电力电子实训装置、单片机技术实训装置、变频调速实训装置、PLC可编程控制器实训装置、过程控制等实训装置。
我公司与国内众多的高等院校、职业培训中心建立了良好的合作关系,真正实现了产品生产过程与学生实习的有机结合。同时,我公司注重于技术的开发,人才的培养,以雄厚的技术实力、优质的产品、良好的服务赢得广大客户和朋友的信赖,我公司将以诚信、专业、高效的理念,创金牌服务,为打造一流教学实验设备生产基地而奋斗!
了解设备功能,在教学中融合。
在小学数学教学中,有效运用现代教育技术与数学学科的整合, 准确把握、巧妙利用二者的融会点,不仅能激发学生学数学的兴趣,促进学生主动思考和自主探索,培养学生的创新精神和创新能力。教学中还能便于演示有利于学生掌握重点,突破难点,增加教学密度,促进作业的反馈,从而达到提高课堂教学效率的目的。
关键词:提高教学效率 演示 融会点 创新精神 创造能力
在小学数学教学中,我们可以整合现代教育技术与小学数学教学,准确把握、巧妙利用二者的融会点,不仅能激发学生学数学的兴趣,促进学生主动思考和自主探索,还能培养出具有创新精神和创新能力的人才。
一、运用现代教育技术演示知识的形成过程。
传统数学的误区之一是只求结果忽视过程;创新教育要求最大限度地重视知识的形成过程,因为只有明了知识的形成、结构、链接方式,学生才能运用这些方式去创造新的成果。
在教学《圆柱的表面积》时,我就运用了现代教育技术,达到了很好的效果。我制作了圆柱的展开过程。学生看到,沿圆柱的一条高剪开,然后慢慢地展开,最后在屏幕上展示的是圆柱的两个底面(圆)、一个侧面(长方形)。但是,我没有停留在这一层次,而是继续问:“沿圆柱的一条高剪开,圆柱的侧面还可能是什么形状?”学生可以想象到还可能是正方形。
然后又继续在电脑上显示:只要圆柱的高与底面周长相等,圆柱的侧面展开图就是正方形。然后继续问:“圆柱的侧面展开图还可能是什么形状?”
学生答还可能是平行四边形。电脑显示:斜着剪开圆柱的侧面,展开之后就是平行四边形。还有学生提到,如果允许剪两刀的话,可能是什么形状。
二、运用现代教育技术演示知识的内在联系。
在小学数学教学中,有效运用现代教育技术能将学生平常所学孤立的、分散的知识串成线、连成片、结成网,又能激发学生的学习兴趣,促进学生主动思考和自主探索,培养学生的创造能力;同时也有机渗透了“事物之间是普遍联系的”、“在一定条件下可以互相转化的”辩证唯物主义思想。
如在上“复习平面图形面积计算时,我首先根据教材的安排,引导学生回顾各种图形面积计算公式的推导过程,然后话锋一转:“其实,除了圆以外,其余的五种图形只要用一个公式就可以求出他们的面积了。”学生一听都愣了:“怎么可能?”
此时教师利用课件动态演示将一个梯形转变成三角形的过程。有的学生发现:把梯形的上底逐渐缩短,当缩成一点时就变成了三角形;三角形可以看成上底为0的梯形,所以三角形面积也可以用梯形面积计算:S=(a+b)×h÷2=(a+0)×h÷2=a×h÷2。教师随即对这些同学进行了表扬,并进一步启发:“同学们,从这个例子你还能联想到什么?”
学生通过思考、讨论、交流,发现梯形与三角形、平行四边形、长方形和正方形之间可以互相转化的;梯形面积公式是一个“万能公式”,利用它能求出除圆以外的其他四种图形的面积。哪知临下课时有个学生说:“梯形面积公式也能求出圆的面积!”我一听颇感意外,说:“你能说说理由吗?”
“既然三角形能看成梯形,那么扇形也能看成是梯形,圆也可以看成是梯形,只不过要把圆心看成是梯形的上底,圆的周长看成是梯形的下底,圆的半径看成是梯形的高,面积是S=(a+b)h÷2=(0+2πr)×r÷2=2πr×r÷2=πr。”这位学生的奇思妙想让我深感震惊。他的发言,不仅完善了我的看法,而且能看出学生对这一问题所作的思考。
在教学中,我运用现代教育技术,创造性地沟通梯形面积公式与其它几种平面图形面积公式之间的内在联系,充分调动了学生学习的主动性和学习的兴趣,培养了学生的创造能力,有效地提高了课堂教学效率。
三、运用现代教育技术演示数的无穷魅力。
创造源于对所从事的活动深沉的爱。只有将数学的美、数学的魅力充分展示给学生看,学生才不会将数学视为畏途,从而创造出在成人看来哪怕是幼稚的可笑的“新”。
比如,在学完比例之后,我让学生思考:具有六个约数的最小的两位数是( 12 );它有哪些约数?(1、2、3、4、6、12);这些约数可以组成比例吗?学生经过简单的思考,发现可以组成比例。我又问:“只能组成一个比例吗?可以组成多少个比例?”学生经过讨论之后,找到了很多个比例。我将他们说的比例及时输到电脑屏幕上。最后,形成了这样的排列:
本文由用户上传,如有侵权请联系删除!转转请注明出处:https://nongye.s666.cn/bk/6_6572097179.html