中国和俄罗斯边境上有哪些大城市
中国和俄罗斯交界的口岸城市有主要有:珲春、黑河、绥芬河、满洲里。
1、珲春市
珲春市是吉林省延边朝鲜族自治州下辖县级市,它地处吉林省东部,延边朝鲜族自治州东南,图们江下游,与俄罗斯、朝鲜山水相连,与韩国、日本隔海相望。珲春市是中国唯一地处中、朝、俄三国交界的边境城市。由于珲春市处于图们江区域国际合作开发的核心地带,是中国直接进入日本海的唯一通道,也被称为“东北亚的金三角”。
2、绥芬河市
绥芬河市是由牡丹江市代管黑龙江省直辖的县级市,它位于黑龙江省东南部,东与俄罗斯远东最发达的滨海边疆区接壤,辖区面积为460平方公里,是一座风光秀丽的边境山城。绥芬河市处于东北亚经济圈的中心地带,是中国通往日本海的陆路贸易口岸之一。
是中国东北地区对外开放,参与国际分工的重要窗口和桥梁,承接着我国振兴东北和俄罗斯开发远东两大战略的重要节点城市,被誉为连接东北亚和走向亚太地区的“黄金通道”。
3、黑河市
黑河市是黑龙江省的下辖地级市,位于黑龙江省西北部,小兴安岭北麓,它以黑龙江主航道中心为界,与俄罗斯远东第三大城市布拉戈维申斯克(海兰泡)隔江相望,区域总面积为6.83万平方千米,是中俄4374公里边境线上唯一一座与俄首府相对应的距离最近、规模最大、规格最高的边境城市,也是“龙江丝路带”上重要的节点城市,有“中俄之窗”、“欧亚之门”等美誉。
4、满洲里是由呼伦贝尔市代管的内蒙古自治区直辖县级市和内蒙古自治区计划单列市(准地级市),它是一座拥有百年历史的口岸城市,位于内蒙古呼伦贝尔大草原的腹地的西北部,东依大兴安岭,西邻蒙古国,南濒呼伦湖,北接俄罗斯,区域总面积为736平方公里。满洲里市代管呼伦贝尔市扎赉诺尔区,是中国最大的陆运口岸城市。
扩展资料:
满洲里是由呼伦贝尔市代管的内蒙古自治区直辖县级市和内蒙古自治区计划单列市 、准地级市,是中国最大的陆运口岸城市,是国务院确定的国家重点开发开放试验区、边境旅游试验区 。境内满洲里口岸是中国最大的陆路口岸。
满洲里市位于内蒙古呼伦贝尔大草原的西北部,东依大兴安岭、南濒呼伦湖、西临蒙古国、北接俄罗斯联邦。满洲里市代管呼伦贝尔市扎赉诺尔区。全市总面积732平方公里(含扎赉诺尔区);总人口(含扎赉诺尔区)32万,其中户籍人口17万,由蒙、汉、回、朝鲜、鄂温克、鄂伦春、俄罗斯等20多个民族组成。
满洲里原称“霍勒津布拉格”,蒙语意“旺盛的泉水”。1901年因东清铁路的修建而得俄语名“满洲里亚”,音译成汉语为“满洲里”。
满洲里是一座拥有百年历史的口岸城市,融合中俄蒙三国风情,被誉为“东亚之窗”。
中国地下水的水化学特征
1.1 水资源农业利用概况
世界干旱半干旱地区遍及50多个国家和地区,总面积约为陆地面积的1/3,在14亿公顷耕地中,主要依靠自然降水从事农业生产的旱地占80%。全球的农业灌溉面积由20世纪初的5×107公顷增加到目前2.5×108公顷,据估计到2010年全球灌溉面积将在现有的基础上增加19%,即耕地灌溉面积占总耕地的21.2%,而相应的灌溉水量将增加17%。1950~1985年,全球灌溉面积年均增长5%以上,占耕地17.8%的灌溉面积,生产了世界食物总量的1/3。但由于全球气候变暖和干旱日趋严重,水资源日趋紧张,发展新灌溉系统的成本不断上升,平均每公顷成本超过4500美元,甚至高达10500美元,灌溉农业的效益下降,制约了灌溉农业的发展。自1980年以来,世界灌溉面积增长速度明显下降,年增长率不到1%。国际食物政策研究所报告指出,从70年代后期开始全球新的水资源开发已经趋于缓慢,开发新的水资源的费用越来越昂贵,灌溉项目的投资正在减少,特别是亚洲。由于单一技术的应用和水资源有效利用率偏低,全球每年仅由于涝灾和盐碱化失去的土地面积达30~150万公顷。
由于自然地理气候和经济发展水平的不同,各国、各地区的农业用水状况也不相同。表3-1给出全球161个国家用水量与用水结构。不难看出,全球性水资源不但分布不均,而且利用结构也不相同。亚洲和非洲这两个贫水和人口密集地区农业用水占总用水的比例均高达85%左右,表明这两个地区水资源对于食物安全的保障形势依然严峻。从水资源开发利用程度看,非洲地区低于欧美既是由于经济条件限制,也由于水资源总量短缺和开发难度高。亚洲地区水资源开发利用程度为5大洲最高,达到10.7%,但仍低于我国的23%。发达国家和水资源富裕地区水资源开发利用程度均低于世界平均水平,而且农业用水占总用水的比例低于50%。
表3-2给出国际灌溉排水委员会(ICID)88个成员国农业灌溉的情况。88个成员国总人口占全球人口的80%左右,耕地面积占86.3%,灌溉面积占99%,耕地灌溉率平均为20.5%。表3-1和表3-2数据说明,在全球范围内,农业用水的主要来源仍是利用自然降水,在水资源富裕地区尤为显著。灌溉农业受资源紧缺、成本上升、农业效益下降等因素的影响,增长速率明显降低。亚洲地区由于人口密集,水资源的开发程度、耕地灌溉率和农业用水量远高于其他地区,这一方面说明亚洲地区灌溉农业发展迅速,但近年来亚洲地区灌溉投资下降和生态环境恶化的趋势也表明,亚洲地区以水资源开发为主的农业发展方式使水资源过度消耗,农业进一步发展面临的水资源压力将加大,节水高效应是亚洲地区农业发展的基本方向。
表3-1 世界各地区用水量与用水结构
地 区
国家数
人口
百万
总用水量
km3/yr
人均用水
m3/人yr
水资源开发利用率
%
用水结构(%)
农业
工业
生活
非 洲
50
723.40
151.96
210.0
2.8
85.4
5.8
8.7
美 洲
28
753.84
690.36
915.8
3.7
48.1
38.8
13.0
亚 洲
48
3461.75
1636.45
472.7
10.7
86.4
7.7
6.0
欧 洲
30
764.54
462.08
604.4
6.0
32.3
53.2
14.7
大洋州
5
27.13
16.37
616.7
1.1
34.5
3.1
62.4
合 计
161
5730.66
2957.58
516.1
6.1
68.6
22.0
9.4
资料来源:《世界之水》(1998~1999淡水资源报告)
表3-2 各地区ICID成员国灌溉情况
地 区
国家数
人口
(百万)
农业人口(%)
总面积
Mhm2
耕地面积
(Mhm2)
耕地与总面积比(%)
耕地灌溉面积(Mhm2)
耕 地
灌溉率(%)
非 洲
21
552.87
50.53
1898.47
146.65
7.72
11.86
8.08
美 洲
15
723.46
12.58
3758.11
389.68
10.36
38.09
9.77
亚洲、大洋州
25
3402.69
56.99
3162.64
502.16
15.87
170.11
43.83
欧 洲
27
693.18
13.05
575.06
169.70
29.50
27.56
16.24
合 计
88
5372.20
44.67
9394.28
1208.19
12.86
247.62
20.49
资料来源:ICID
1.2 国外发展节水农业基本做法
1.2.1 农业水资源开源技术
1)地面集水技术
在半干旱和干旱农业区,因地制宜地修建各类集水设施,收集雨水和地面径流,以供直接利用或注入当地水库或地下含水层。以色列从北部戈兰高地到南部内盖夫沙漠,全国分布着百万个地方集水设施,每年收集约1~2亿立方米水。美国则制定雨水收集系统的标准或规划指南以及系统的优化设计。其雨水收集设施主要有钢制容器、外表涂有橡胶或包有塑料的纤维可折叠容器、纤维玻璃小槽、聚乙烯容器、红木容器等类型。集雨面用柔性膜、沥青或其他不透水材料进行处理。
2)跨流域调水
跨流域调水是解决水资源时空分布不均的一种有效途径。原苏联地区、美国、印度、加拿大、墨西哥、巴基斯坦等国都进行了大规模的调水,伊拉克、利比亚和土耳其等国也在积极实施本国的调水计划。但调水工程同时也会产生一些严重的负效应,如投资过大、移民安置、淹没耕地等引发的一系列社会和经济问题以及环境问题。
3)地下水库利用技术
全球地下淡水占全球淡水总储量的30.1%,因此世界各国均非常重视利用地下水发展灌溉。美国加州的不少灌区都修建了地下水回灌系统。通过地下水库来调蓄水量,以丰补歉,提高水资源的有效利用率。
4)劣质水利用技术
劣质水包括工业和生活污水、咸水。在淡水日益紧缺的形势下,不少国家把利用劣质水灌溉作为弥补淡水资源不足的一个重要途径。由于将污水灌溉看作是消除污染、解决农业淡水资源不足、促进农业增产的有力措施,进一步推动了污水灌溉的发展。
以色列处理后的污水利用率已达70%,居世界首位,其中1/3用于灌溉,约占总灌溉水量1/5。美国目前已建成3400余处污水再利用工程,全国50个州中有45个州采用了污水灌溉。20世纪80年代初,前苏联已有50%的污水,包括全部工业废水用于农田灌溉。印度自20世纪80年代开始,每年用于农田灌溉的污水都占城市污水总量的50%以上。沙特阿拉伯的大量灌溉用水,尤其是非粮食作物用水,均为处理过的废水。
以色列利用淡化咸水进行灌溉的面积达到45,000 公顷,西班牙、意大利分别为29,000公顷和15,000公顷。
1.2.2 输水节水技术
1)渠道防渗技术
渠道衬砌是减少输水损失、提高灌溉水利用率的主要措施。各国用于衬砌的材料包括刚性材料、土料和膜料三大类。目前刚性材料(尤其是砼衬砌)占主导地位,随着化学工业的发展和机械化施工技术的进步,以聚乙烯和聚氯乙烯薄膜为主的膜料衬砌的比重日益增大。膜料衬砌具有防渗效果好、耐久性强、造价低及便于施工等优点。在美国用做水工建筑材料的高分子聚合物种类日渐增多,应用范围也逐渐扩大。美国从开挖渠床、铺设塑料薄膜直到填土或浇筑砼保护层都由机械完成。前苏联的中亚地区和乌克兰地区也在中、小型渠道采用了整体浇筑砼和砼预制板衬砌下加铺0.2毫米厚防渗膜料的方法。印度旁遮普邦采用在预制硅砖下加铺廉价聚乙烯薄膜,渠道运行15年,状况良好,取得了显著的工程效益。
2)低压管道输水灌溉技术
低压管道输水不仅可以减少输配水损失,还具有节地、适应地形强、防冻胀等优点,且有利于管理,在国际上已成为田间输水技术的主要方向。美国1984年低压管道输水灌溉面积已占总灌溉面积的46.9%,加州圣华金河谷灌区支渠以下全部管道化,渠系水利用系数达到0.97。日本、以色列、前苏联、东欧各国以及加拿大、澳大利亚等国也发展很快。国外低压管道灌溉技术已趋成熟,包括地面和地埋两种类型。地面管材主要有柔性聚乙烯软管、薄壁镀锌管、铝合金管、尼龙涂橡胶管,地埋管材包括低压砼土管、涂塑薄壁钢管、轻型半硬质塑料管。今后的主要研究方向是开发性能更优、价格更低的新型管材和各种先进量水、放水设备,以及适宜多目标利用的系统型式或实现自动化管理。
1.2.3 田间灌溉节水技术
1)喷微灌技术
采用高效省水的灌溉技术是提高农业水利用率的一个重要途径,喷微灌技术是世界灌溉节水技术发展的主流。欧洲国家82%的灌溉面积利用先进的灌溉技术,仅有14%的灌溉面积利用地面重力灌溉。喷微灌技术在以色列、美国、前苏联和欧洲一些国家发展比较快,以色列、德国、奥地利三国的喷微灌溉面积占本国灌溉面积的100%。以色列水资源极度贫乏,十分重视选用最节水的灌溉技术,喷微灌中滴灌比例已达70%(表3-3)。
表3-3 各国采用先进灌溉技术情况
国 家
总灌溉面积(百万公顷)
采用先进灌水技术的灌溉面积(公顷)
喷、滴灌面积占总灌溉面积(%)
喷灌
滴灌
喷、滴灌合计
美 国
21.400
3,380,000
1,050,000
4,430,000
21.0
法 国
1.610
—
140,000
1,450,000
90.0
印 度
57.000
658,500
260,000
918,500
1.6
奥 地 利
0.080
760,000
3,000
763,000
100.0
埃 及
3.300
450.000
104.000
554.000
17.0
德 国
0.532
530,000
2,000
532,000
100.0
南 非
1.300
255,000
220,000
475,000
36.5
意 大 利
2.700
345,000
80,000
425,000
16.0
斯洛伐克
0.310
310,000
2,650
312,650
99.0
伊 朗
8.050
199,075
53,717
252,792
3.1
以 色 列
0.231
70,000
161,000
231,000
100.0
叙 利 亚
1.280
93,000
62,000
155,000
12.0
英 国
0.160
156,000
2,000
158,000
99.0
捷 克
0.153
151,011
1,224
152,235
99.5
澳大利亚
2.000
—
—
100,000
5.0
津巴布维
0.150
87,000
8,000
98,000
63.0
匈 牙 利
0.130
82,000
4,200
89,200
68.6
葡 萄 牙
0.630
40,000
25,000
65,000
10.0
马 拉 维
0.055
43,193
5,450
48,643
87.0
约 旦
0.070
5,300
38,300
43,600
62.0
塞浦路斯
0.055
2,000
25,000
27,000
49.0
墨 西 哥
6.200
—
105,000
600,000
10.0
喷灌形式有中心支轴式、滚移式、平移式、卷盘式、人工季节性固定喷灌等。
微灌与喷灌相比,因更为节水、节能,增产效果更显著,故其发展势头也很强劲。世界微灌面积由1981年的43.7万公顷发展到2000年的376.7万公顷。美国、以色列正在发展地下滴灌技术,取得了较地面滴灌更好的效果,并且有利于使用污水灌溉。而以重力(低水头)滴灌为代表的家庭小型微灌系统则特别适合在发展中国家推广。
许多发展中国家也都根据本国国情,采取适度发展的路子,使喷微灌得到一定发展。
喷微灌技术发展趋势是:A.低压节能型;B.喷微灌相互结合;C.积极开展多目标利用;D.改进设备、提高性能;E.产品日趋标准化、系列化、通用化;F.运行管理自动化。
2)改进地面灌水技术
在发展喷微灌技术同时,各国非常重视对常规灌水方法的改进与发展,并研制出绳索控制灌溉(美国)、坡地灌水管灌溉(苏联)、波涌灌溉(美国)、地面浸润灌溉(日本)、负压差灌溉、土壤网灌溉 、小型干燥器或雾水收集器集水灌溉(南美)、皿灌(印度、巴西)、水平池灌溉(美国)等新技术新方法。
1.2.4 农艺节水措施
主要包括选育耐旱作物与节水品种,改良耕作方法与栽培技术,推广地面覆盖技术。这些措施都既适宜于灌溉农业区,也适宜于旱作农业区。
1)选育耐旱作物与节水品种
耐旱作物一般在生长关键期能避开干旱季节,或抗逆性强,或能和当地雨季相吻合,在雨季快速生长,以充分利用有限的降水。印度和美国十分重视高粱品种的选育研究,目前全印度推广应用的优良高粱杂交品种已达45个,覆盖面已达38%。这些品种不仅产量高,而且品质优良,有些高粱的口感可以和我国的粳米相媲美。
美国旱区高粱广泛用于畜牧业必需的青贮料、青刈干草、残茬放牧,更是残茬覆盖保护耕作法的关键环节。高粱水分利用效率高,生产性能稳定,已成为高粱/肉牛旱地农牧制度的基础。美国注重强化高粱耐旱性能的工作,得克萨斯州农业试验站近年来用渐渗杂交法将高大、晚熟、不适应温带的热带高粱种质转变成矮秆、早熟有栽培价值、适应温带的类型,扩大了种植利用范围。得克萨斯州理工技术大学植物分子研究室人员经过多年努力,MAS的分子育种工作已有突破。亚利桑那州的Tucson试验站,正大力筛选耐盐、省水植物,以丰富现今栽培的作物种群。
2)改良耕作方法
合理的土壤耕作具有调节土壤物理性状、蓄水保墒、增加可给营养元素的效果。因此,各国在探究发展节水农业途径时,都非常重视耕作方法的改进与发展。
发达国家由于机械化作业和化肥施用造成土壤结构破坏,引发失墒、水蚀、风蚀,为此推行了各种保护性耕作。基本趋向是由多耕转为少耕免耕,由浅耕转为深耕,由耕翻转为深松,由单一作物连作转为粮草轮作或适度休闲。重视水土保持、纳雨蓄墒、以肥调水。
在美国,随着高效除草剂和免耕播种机的出现,现代免耕技术已被广泛用于小麦、大麦、棉花、烟草、高粱、大豆、甜菜和饲料作物。目前全美国70%的耕地已取消了铧犁翻耕,免耕种植的面积已占全国粮食作物面积的20%。据此有人预测,到2010年美国将有95%的农民用少免耕法代替传统耕法。
3)推广地面覆盖技术
地面覆盖包括有机物覆盖和地膜覆盖。具有抑制土壤蒸发、蓄存降水、保持土壤水分、提高地温的功能,能够节省灌水、提高产量。并且技术简单、成本低廉是一项非常有效的抗旱增产措施。美国平原地带广泛实行作物秸秆覆盖,麦秸、高粱和轧棉碎屑覆盖的土壤蓄水都明显增加。最早使用地膜的日本,根据不同的作物和栽培方式采用很多不同品种的地膜,包括透明、黑色、银黑、镀铝等多种颜色、材质以及带孔和条状网眼地膜。为解决污染问题,近年来开发了多种可降解地膜。随着光降解地膜覆盖材料、多功能覆盖机以及薄型高强度地膜的出现,地膜覆盖技术在西欧大面积用于大田蔬菜、棉花和玉米等作物。
1.2.5 化学节水技术
1)化学覆盖
化学覆盖是以多分子膜阻碍土壤水气散发,水气在膜下聚集凝结使耕层土壤水分含量升高。国外使用农田化学覆盖的有原苏联、美国以及日本、法国、印度、罗马尼亚、比利时等十多个国家,增产效果达到10~30%。农田化学覆盖材料包括石蜡、沥青乳剂、树脂、橡胶、塑料等,使用方式包括成膜、泡沫和粉末覆盖。
2)保水剂
保水剂即土壤改良制,从成分上大致可分为无机、有机和高分子合成物质三类。保水剂吸水速度快(吸水能力可达50~500倍),在干旱环境下能将所含水分通过扩散慢慢渗出,并能反复吸水和渗水。通常用作种子涂层、苗木根系涂层和种子造粒。美国农业部北部研究中心于70年代合成了吸水性很强的新型保水剂,包括淀粉系、纤维素系和合成聚合体3个系。在用于种子造林、种子涂层和树苗移栽等方面取得了良好效果。日本、英国、法国和前苏联等国都研制、使用了自己的保水剂产品。研究较多的是以乙烯醇/丙烯酸盐类和交联聚丙烯酸盐组成的聚合体。今后的主要研究方向是延长其使用寿命,以提高利用效益,确保经济性。保水剂及其分解后的成分对土壤和作物有无不利影响还需要进一步研究。
3)抗蒸腾剂
据研究人员测定,作物根系吸收的水量只有1%成为作物细胞的组成部分,其余的99%都通过作物蒸腾进入大气。这些水中有一部分是作物维系生命所必需的,另一部分则属于无效散失。据美国研究资料使用抗蒸腾剂可减少土壤水分损耗40%左右。抗蒸腾剂主要作用类型包括代谢型、薄膜型和反射型。
1.2.6 管理节水措施
1)制定节水灌溉制度
节水灌溉制度不仅关系到作物单位耗水产出,而且还能控制作物最大可能耗水量,是节水型农业的一项重要内容。70年代以来,各国在这方面开展了大量研究。以色列试验结果显示,最佳灌溉处理是利用最少的水获得接近于最高产量的产量,即相当于最高产量85%~95%的产量。
2)重视田间水管理和农民参与
田间水管理是灌溉水管理的重要组成部分。各国为了改善和加强田间水管理,在不断完善田间渠道和配套、采用先进的灌水技术、积极探索减少水的蒸发、渗漏,增加对土壤水的利用以提高降水和灌溉水的利用效率的同时,也纷纷重视发动农民参与水管理和加强量配水设施建设。
加拿大、美国和日本等发达国家开始重视用“需求”管理取代“供给”管理,实施灌溉用水的动态管理。
3)加强灌区用水信息管理
随着淡水资源供需矛盾日益突出,近些年来不少国家已注意研究灌溉农业经济用水和用水管理现代化问题。灌溉用水管理实质是灌溉用水信息管理,合理的灌溉及其相应的措施取决于可靠的用水信息。美、日等发达国家的用水信息管理比较先进,如美国加州CIMIS灌溉管理信息系统,包括由设在重点农业区的70多个气象站组成的网络,每个站的观测数据在每晚自动传输到水资源局计算中心,中心综合汇集的气象数据包括降雨、土壤、空气温度、风向风速、相对湿度,经分析校准后存入CIMIS数据库,提供给网站,再由各网站提供给农户,精确确定灌水量,提高灌溉效率。
4)实行计划用水,合理调配水量
在地多水少灌区,供水量与作物田间需水量之间供需矛盾突出。实施计划用水,采用主要农作物有限供水的优化分水技术和轮灌斗农渠的最佳组合和实行灌区多水源统一调度,可以有效调配有限的水资源以发挥最大效益。
5)促进灌溉管理向自动化发展
随着科学技术的迅速发展,发达国家普遍采用计算机、电测、遥感等新技术进行水管理。在美国,大型灌区都设有调度中心,实行自动化管理。日本于20世纪80年代初新建或改建的灌区,大多从渠首到各分水点都安装有遥测、遥控装置。罗马尼亚大多数灌区在80年代初便实现了自动化或半自动化管理。以色列不论大小灌区,全部采用自动化控制。
6)通过水价调节用水
从全球范围内看,灌溉水的水价远低于生活、城市和工业用水。即使在法国、德国和以色列这样的灌溉系统能够达到自我维持发展的发达国家,其灌溉用水的价格仍然只有其它用水价的1/10左右(表3-4)。澳大利亚、塞浦路斯、美国、埃及、南非、印度、巴基斯坦、法国、英国等都制定了相应的水价政策。
7)水资源管理机构运行与维护
多数国家都设有确定不同类型需水和分配水的机构。澳大利亚、埃及、巴基斯坦、印度、马来西亚的灌溉系统的运行,是由政府机构执行的。但奥地利、英国、蒙古、美国,灌溉系统的运行则主要是由用水者协会来完成的。而其他一些国家,如意大利、以色列、南非、土耳其等国是由政府机构和用水者协会来共同完成的。
灌溉系统的运行维护各国也不尽相同,政府与用水者投入的运行与维护的费用的比例也大不相同。塞浦路斯、巴基斯坦、印度、南非和泰国全部由政府负担所需的费用,而奥地利、法国、德国、美国则全部由用水者负担所需的费用,其他国家则由二者共同负担。
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
朱琰
(浙江大学地球科学系,杭州玉泉,310012,中国)
中国位于世界上最大的陆地欧亚大陆的东部,陆地面积约960×104km2。东临世界上最大的海洋太平洋。从东往西,地势从滨海平原到丘陵高地,一直到世界屋脊青藏高原。由于不同的地区具有不同的气候、地形地貌和地质特征,因此,整个国家具有较为复杂的区域水文地质结构和水文地质特征。
1 气候条件
1.1 概述
中国的气候受较强的季风影响,冬季西北风、夏季东南风为主。受季风的周期变化和地形的影响,总体上中国大部分地区四季分明。冬季,来自高纬度地区的北风寒冷干燥;夏季,来自低纬度海域的南风温暖湿润。由于地域广泛,跨越35°的纬度,地形复杂,中国的地区气候差异显著。季风造成各地降雨和气温的明显变化,可分为热带、温带和寒带,并且形成热带雨林、沙漠、寒潮、飓风和春雨等。
夏季3个月的降雨占全年降雨的60%以上。降雨量由东南沿海(1000~2000mm,最大8408mm台湾)逐渐向西北的100~200mm递减。新疆东部,欧亚大陆的中心,同时也是中国干旱地区的中心,年降雨量小于50mm。最小值在吐鲁番盆地的托克逊,仅3.9mm。
1.2 气候分区
以长江为界,中国南方为亚热带气候,终年多雨,夏季湿热漫长,冬季短暂。总体上,中国可以分为东北、华中、华南、西南、西藏、西部内陆和内蒙古7个气候分区。其特征如表1。
表1 中国大陆气候分区与特征
中国的大部分地区处于四季分明的温带,东南和华中地区温暖湿润,北方和东北地区相对干旱。许多地区夏季炎热多雨、湿度大,冬季干燥。在北方80%以上的降雨集中在夏季,而南方夏季降雨量只占年降雨量的40%。东南沿海7月至9月的雨季台风频繁。
2 水文地质特征
2.1 水文地质分区及其水文地质特征
地理上,中国可分为6个水文地质分区Ⅰ—东部大平原:Ⅰ1—松辽平原,Ⅰ2—黄淮海平原;Ⅱ—北部高原区:Ⅱ1—内蒙古高原,Ⅱ2—黄土高原;Ⅲ—西部内陆盆地:Ⅲ1—河西走廊、Ⅲ2—准格尔盆地、Ⅲ3—塔里木盆地,Ⅲ4—柴达木盆地;Ⅳ—东南和中南丘陵;V—西南岩溶丘陵;Ⅵ—青藏高原:Ⅵ1—冻土高原,Ⅵ2—高原山地。中部顺纬度方向分布的秦岭山脉可作为划分南北的天然界线,各地区截然不同的地理和地质条件形成各自的水文地质特征。
(1)北方地区:在北方,由东往西,分别为:
东部大平原,主要包括松辽平原、黄淮海平原等,广泛分布的大平原,包括辽阔的山麓平原,巨厚的第四纪砂砾石形成很好、很厚的含水层。平原主要是中生代或新生代的沉降盆地,分布巨厚的松散沉积物,为丰富的地下水提供了有利的储存条件。地下水主要接受降雨的垂直入渗补给。年降雨量小于800mm,并且由东往西递减。
往西气候变化为典型的内陆干旱区,但山麓平原由于受山区河流的入渗补给,因此含有大量的地下水。在贺兰山以东的半干旱的地区,年降雨量为200~500mm,在贺兰山以西的极端干旱的戈壁地区,年降雨量减少为小于100mm。
内蒙古高原和黄土高原,是东部半湿润地区与西部干旱地区的过渡带。由于地质条件的限制,地下水缺乏,仅在一些断陷盆地,如关中平原、河套平原和银川平原分布丰富的地下水。
西部内陆盆地,主要由河西走廊、准格尔盆地、塔里木盆地和柴达木盆地组成,典型的干旱沙漠,地下水分布在广阔的山麓平原。
北方地下水的水化学特征较南方复杂得多。
(2)南方地区:在南方,基岩裸露,山地丘陵广泛分布,穿插小型的盆地,因此以地下水裂隙水为主。由东往西分别为:
东南和华中、华南丘陵,各类基岩广泛出露,以基岩裂隙水为主。
西南岩溶丘陵,碳酸盐岩广泛分布,岩溶水和地下暗河发育良好。碳酸盐岩主要为古生代和部分三叠纪的石灰岩,层厚,岩溶裂隙充分发育,降雨量的30%~70%渗入地下,集中在岩溶管道中,形成主要受构造条件控制的地下河系统。
青藏高原,平均海拔4000m。含水层主要为永冻层或具冰川成因,地下水完全受垂直分带控制。
中国南方年降雨量为1000~3000mm,河流湖泊密布,但部分中生代红层盆地和滨海平原严重缺水。在长江三角洲平原、江汉平原和成都平原等地的第四纪含水层中发现厚度大、地下水丰富的区域。
中国南方中生代和新生代的红层盆地广泛分布、丘陵起伏。普遍含钙质砂岩和钙质结核,形成承压含水层,常被作为小型企业的供水水源。
2.2 地下水资源的开发
随着城市人口的增长和工业的迅速发展,地下水在中国的工业和市政供水中的重要性日益增加。根据国土资源部的统计,中国有1243个地下水开采水源地,以开采量大小和地下水类型统计,见表2。
表2 中国地下水水源地类型统计
许多地区依赖于地下水。约有400个城市以地下水为供水水源,其中约60个城市以地下水供水为主,如石家庄、呼和浩特、沈阳、济南、海口、西安、西宁、银川、乌鲁木齐和拉萨等。在许多城市,如北京、天津、大连、哈尔滨、南京、杭州、南昌、青岛、郑州、武汉、广州、成都、贵阳、兰州、长春、上海等,地下水与地表水一起作为供水水源。因此,地下水的水化学特征和水质变化对于社会生产和人民身体健康非常重要。
3 地下水的化学性质
3.1 地下水水质分类
受赋存条件及形成机理控制,以及近代人类活动影响,地下水具有不同的水化学特征。
传统上,地下水水质的总体好坏是根据总溶解固体(TDS,原采用矿化度)来判断,有淡水(<1g/L),微咸水(1~3g/L),咸水(3~10g/L)和卤水(>10g/L)之分。
一般来说,从山区到内陆盆地,地下水水质具有明显的水平分带性,上游山区至戈壁砾石带水质好,一般为淡水,矿化度小于1g/L,以潜水为主;下游细土平原带具多层结构,为潜水、潜水-承压水,水质一般也较好,矿化度一般小于1g/L,局部大于1g/L;而再向下游,水质越来越差,一般为微咸水、咸水甚至为卤水。滨海平原,由于浅部含水层卤水广泛分布,造成供水困难。淡水分布于深层承压含水层中,被大量开采用于工农业和人民生活。在一些滨海平原和沿海城市,存在分隔的多层含水层,上部卤水含水层,深部淡水含水层。
从来源上看,地下水成分来源于大气圈、土壤和水-岩作用(风化),以及人类活动的污染,比如采矿、地面清洗、农业、酸雨、生活和工业废水。
地下水缓慢的地下运移,使得化学组分的赋存时间远长于地表水。由于各地地表水水质的差异,很难用统一的单项指标来衡量地下水的水质及其变化。
一般地,可用一系列指标作为地下水水质评价参数(其中斜体字为基本参数,作为第一序列来考虑):
(1)盐度:Cl,SEC(specific electrical conductance),SO4,Br,TDS(total dissolved solids),Mg/Ca,delta18O,delta2H,F。
(2)酸度和氧化还原状况:pH,HCO3,Eh,DO,Fe,As。
(3)放射性:3H,36Cl,222Rn。
(4)农业污染:NO3,SO4,DOC(dissolved organic carbon),K/Na,P,杀虫剂、除草剂。
(5)矿业污染:SO4,pH,Fe,As,一些金属,F,Sr。
(6)城市污染:Cl,HCO3,DOC,B,石油,有机溶剂。
3.2 地下水水化学的区域性特征
受气候、地貌、水文等诸多因素的影响,我国浅层地下水的水质由东南向北及西北逐渐变化。
自昆仑山-秦岭-淮河一线以南的湿润地带,大多数地区的地下水矿化度小于1.0g/L(滨海平原除外),而其中大部分地区是0.2~0.5g/L。水化学类型为重碳酸盐型。
此线以北的干旱、半干旱地区的地下水矿化度较复杂。
东部平原的浅层地下水主要表现盐化特征,由山前平原的淡水(矿化度小于1.0g/L),向滨海平原渐变为微咸水乃至咸水。东部的松辽平原中部、下辽河平原和黄淮海平原普遍大于1.0g/L,黄河古三角洲及江苏省滨海平原地下水矿化度由1.0g/L渐增至10.0g/L以上。
从内蒙古至西北干旱区,地下水矿化度普遍高于1.0g/L,由内陆盆地边缘向中部出现规律递变,即由溶滤作用的低矿化重碳酸盐型淡水,过渡为溶滤盐化作用成因的成分复杂的硫酸盐型咸水带,呈现水平分带的特点。在年降水量仅10~50mm的荒漠化地区,地下水矿化度高达5~30g/L,局部有盐沼出现。水化学类型的演变从山区向平原为重碳酸盐型→硫酸盐型→氯化物型逐渐过渡。
青藏高原的多年冻土区冻结层上的水,由于大气降水和冰雪融水补给,水质良好,多为重碳酸盐型,矿化度一般小于1.0g/L。冻结层之下的水,一般除第三纪砂岩外,水质良好。第四纪湖相沉积物中水的矿化度较高,多为咸水湖。
3.3 环境水文地球化学异常及其成因
在中国的地下水化学组分的区域性变化规律中,局部地区受自然环境、地质构造、岩性关系影响,形成某些成分的特殊分布,不利于人体健康,成为所谓的原生水文地质问题。
3.3.1 元素过剩
许多地区地下水中铁和氟离子含量过高。
北方由于土地盐碱化(大于17%的北方平原)卤水广泛分布。20世纪50年代,部分地区由于用黄河水大量灌溉,造成32万亩土地的次生盐碱化。目前,在使用黄河水漫灌的河套平原和银川平原,严重的土壤次生盐碱化依然存在。
青藏高原是富硼地区,岩石、土壤、温泉、盐湖的硼含量都十分高。
内蒙古巴丹吉林沙漠、腾格里沙漠、乌兰布和沙漠、新疆的准噶尔盆地、塔里木盆地和藏北高原出现富砷(0.1~25mg/L)的潜水、湖水和矿泉水。
东北、华北、西北的油田地区,民用深井常富碘(0.300~1.920mg/L)。
元素过剩的成因可分为3类:
(1)蒸发浓缩型:东北西部平原、华北滨海平原、内蒙古高原、准噶尔盆地、塔里木盆地、柴达木盆地、藏北高原、关中盆地等地区,气候干燥,蒸发浓缩作用强烈,可溶性盐类在相对低洼的地区富集,造成土壤盐碱化,潜水矿化度增高,常出现咸水、苦水和肥水,水中一些与生命有关的元素,如Na、Mg、Ca、S( )、Cl、N( 和 )、I、F、Se、As、B等含量过剩。在我国干旱、半干旱地区,已发现的地方病有氟中毒、慢性砷中毒、慢性亚硝酸盐中毒、高碘性地方病甲状腺肿、硼肠炎、地方性腹泻(水中硫酸盐过剩所致)、天然性放射性疾病等。
(2)矿床和矿化地层型:由于地下水经过近地表的矿床和矿化地层风化壳后形成元素的富集或过剩。许多金属矿床,常常流行砷、汞、铜、氟、硫酸盐和放射性元素中毒地方病。或者某些矿泉毒性元素含量较高,污染了矿泉流经的地区。
(3)生物积累型:水土中有些元素(Hg、Se、T1)通过生物富集,可以引起中毒性地方病。
3.3.2 元素缺乏
元素缺乏的成因也可分为3类:
(1)湿润山地型:降水丰沛的山区,特别是基岩裸露的山区,十分有利于水迁移能力强的元素淋溶流失,因此,山区常缺碘,如大小兴安岭、长白山、燕山、太行山、祁连山、天山、阿尔泰山、昆仑山、喜马拉雅山、横断山、秦岭、云贵高原、大巴山、大别山、武夷山、南岭等山脉,皆是较严重缺碘的地区。在西北干旱地区和东南湿润地区之间过渡地带的山岳丘陵,形成一条东北-西南走向的低硒地带,在低硒带内,流行与硒缺乏有关的动物白肌病,人类克山病和大骨节病。
(2)沼泽泥炭型:沼泽泥炭发育地区,由于水土还原性,动植物残体的氧化分解作用弱,一些生命元素(I、Cu、Co、B、Se等)的迁移能力下降,有效态含量低,从而形成元素缺乏。
(3)沙土型:由于沙土有机含量低,水分和养分的保持能力差,所以一些生命元素(I、F、Zn、Mo、B、Cu、Se)容易流失。主要分布在沙漠边缘地区和山前冲洪积扇上部。
由于上述各种原因造成地下水中化学成分的过剩或缺乏,对饮用者的健康不利,因此需要我们调查和解决。
3.4 地下水开采造成的水质变化
在含水层开采使用过程中,由于水动力条件和天然化学平衡被破坏,地下水的成分会发生一定的变化,比如F,As的增加,对人体健康不利。潜水的水质变化也可以由滑坡、火灾和其他改变(增加或减少)地面渗透、岩石出露、土壤表层条件,影响地表水入渗的地表作用造成。在我国的具体表现有:
(1)地下水硬度持续升高。如北京地下水硬度由50年代的10~16(德国度),目前大于30(德国度),甚至局部40(德国度)。
(2)滨海地区海水入侵,Cl离子含量增加,水质恶化。
(3)上下含水层贯通,水质好的含水层受到污染。
3.5 地下水污染现状(2000年)及变化趋势(1996~2000年)
根据全国130个城市和地区2000年的地下水水质统计分析,全国地下水总体质量较好,但多数城市地下水仍受到一定程度的污染。
(1)东北地区主要为地下水总硬度、矿化度、硝酸盐、亚硝酸盐、铁和锰超标;其次为硫酸盐和氯化物。自1996年至2000年,东北地区地下水水质总体上保持稳定或略有好转;在局部地段上有污染加重的趋势。其原因为城区内工业和人口较集中,工业及生活污染物排放量大,且排放形式不合理,在市区周围地区化肥农药的使用量过大,也直接或间接地造成地下水水质污染。黑龙江省受原生地质环境影响,地下水中铁和锰含量普遍偏高。
(2)华北地区地下水水质总体较差,长期超量开采地下水改变了华北地区地下水水动力条件,打破了原有的水盐平衡;人类活动的加剧使地下水中的有害物质增多,造成了地下水总矿化度升高、浅层地下水污染、沿海地区海水入侵、氟碘离子升高等问题。因此,华北地区主要为总硬度、矿化度超标严重,特别是河北省的沧州市和廊坊市;其次为硫酸盐、硝酸盐、氯化物和氟化物;少数城市(如许昌市)细菌总数和大肠菌群亦超标明显。1996年至2000年,内蒙古、北京和河北地下水水质基本稳定,超标组分和含量变化不大,山西省地下水水质波动变化明显,天津市地下水水质污染有加重的趋势。
(3)西北地区因人口密度及工农业发展水平的不同,主要城市和地区的地下水水质状况差异也较大。地下水受污染的城市主要有兰州、太原、西安、晋城、运城、铜川、呼和浩特、包头、银川,以浅层地下水污染严重。主要为总硬度、矿化度、硝酸盐和硫酸盐超标,其次为氯化物、氟化物、亚硝酸盐和氨氮,个别城市(西安市和汉中市)六价铬污染。新疆和宁夏主要城市的地下水水质较为稳定;而陕西省主要城市的地下水受工业和生活污染,水质恶化速率最快。兰州市三滩地区地下水酚检出率为74.5%,超标率为34.7%,氰检出率为76.13%。太原市农业污水灌溉面积2.89×104km2,其余工业、生活污水也大都排入汾河,使地下水污染严重。太原盆地浅层水轻污染区682km2,主要指标酚含量0.00167mg/L,重污染区150km2,砷、氰含量分别为0.0265mg/L和0.0169mg/L。
(4)华东地区主要为亚硝酸盐、氨氮、铁和锰超标,部分城市地下水呈酸性,pH值超标严重。由于原生地质环境的影响,地下水中铁、锰含量普遍较高,沿污染河段及城郊地区地下水“三氮”含量普遍较高。1996年至2000年,华东地区除山东省外地下水水质较为稳定。
(5)中南地区主要为亚硝酸盐、硝酸盐、氨氮、铁和锰;其次为总硬度、氟化物和pH值。铁和锰主要为原生环境引起的超标。近几年,河南省的三门峡、鹤壁等市因工业“三废”和生活垃圾不合理排放,致使地下水水质持续恶化。
(6)西南地区主要为总硬度、矿化度、亚硝酸盐、氨氮、铁和锰超标,其次为氟化物、硫酸盐、有机酚、耗氧量和pH值,污染元素主要呈点状分布,超标率较低。
(7)华南地区主要城市地下水污染元素主要有亚硝酸盐、氨氮、铁和锰,总硬度和硝酸盐。另外,部分城市地下水呈酸性,pH值超标严重。
综上所述,我国地下水污染有如下特点:
(1)从污染程度上看,北方城市污染普遍较南方城市重,污染元素多且超标率高。
(2)从超标成分看,“三氮”污染在全国均较突出,矿化度和总硬度超标主要分布在东北、华北、西北和西南地区,铁和锰超标主要分布在南方地区。
(3)从变化趋势看,我国大多数城市地下水水质趋于稳定或略有减轻,部分城市和地区污染加重,应引起重视。
参考文献
[1]国土资源部地质环境监测中心年报,1996~2000.
[2]戎秋涛,翁焕新.环境地球化学.地质出版社,1998.
[3]Chen Mengxiong,Cai Zhuhuang.Groundwater resources and the related environ-hydrogeologic problems in China.Seismological Press,Beijing,2000.
本文由用户上传,如有侵权请联系删除!转转请注明出处:https://nongye.s666.cn/js/5_6571056025.html