蔬菜的采后保鲜
蔬菜在贮藏中仍然是有生命的机体。它需要抵抗不良环境和致病微生物的侵害,保持品质,减少损耗,延长贮藏期。因此,在贮藏中必须维持新鲜蔬菜的正常生命过程,尽量减少外观、色泽、重量、硬度、口味、香味等的变化,以达到保鲜的目的。为此,有必要针对蔬菜采后的生理变化采用相应的保鲜技术,促进我国蔬菜产业的健康发展。 降低呼吸作用,延长贮藏期
降低贮藏蔬菜呼吸作用的一个有效方法是气调保鲜方法。这种方法是在机械制冷的基础上,对贮藏环境中的气体浓度加以调节,主要是降低氧气的浓度,增加二氧化碳的浓度,以此来抑制采后蔬菜的呼吸代谢强度,减少营养物质的消耗。我国应用较多的气调保鲜技术是塑料袋小包装气调、塑料大帐气调和硅橡胶窗气调。此外还有减压贮藏法,就是将贮藏场所的气压降低,一般降低到大气压的1/10,造成一定的真空度,从而达到降氧的目的,这是蔬菜及其他许多食品保鲜的一个新技术,是气调冷藏的进一步发展。减压贮藏适应范围较广,菠菜、生菜、青豆、青葱、水萝卜、蘑菇、番茄等种类在减压贮藏下效果较好,利用该法贮藏效果最好的是番茄,保鲜期可达3个月以上。
蔬菜在贮藏中要尽量降低呼吸强度,呼吸作用越旺盛,各种生理过程的变化越快,生命终止就越早,不利于贮藏。蔬菜呼吸强度的差异,视种类、品种、年龄而异。通常叶菜类呼吸强度最大,果菜类次之,直根、块茎、鳞茎类蔬菜最小;晚熟种呼吸强度较强,早熟种较弱;幼龄期呼吸强度较强,老熟期较弱。此外,温度、大气成分、机械伤、病虫害等对蔬菜呼吸作用也有很大影响。温度高,呼吸强度大,在5-35℃间,每上升10℃,呼吸强度增大1-1.5倍,超过35℃,呼吸强度大幅度下降;温度低,呼吸强度弱,消耗的养分也较少,但不能认为贮藏温度越低越好。降低空气中氧浓度,呼吸会受到抑制,通常氧浓度降低到5%左右,效果佳。受机械损害和病虫为害的蔬菜都会使呼吸加强,在挑选贮藏样品时应剔除。 减少贮菜的蒸腾作用
新鲜蔬菜含水量高达65-95%,在贮藏中易蒸腾脱水,如得不到补充,会引起组织萎蔫、皱缩、光泽消褪,使蔬菜失重失鲜、降低食用品质。所以减少贮藏蔬菜的蒸腾与萎蔫相当重要,应根据不同蔬菜的特性,控制贮藏期间的环境条件,如叶菜类的叶片表面积较大,成长叶片、幼嫩叶片的气孔较多较大,蒸腾严重,在贮藏中最易脱水萎蔫。因此,要增加贮藏室(库)的空气湿度,减少空气流动,使贮菜处在高湿度环境中,使蒸腾作用降到最低限度。此外,选用适当的包装材料也是提高保鲜技术的有效措施。水分等蒸发剧烈的蔬菜宜用防混浊性的包装材料,此类薄膜属于疏水性,为提高亲水性可涂表面活性剂,使薄膜表面生成薄水膜,这不仅能防混浊,尚能防止包装内水分凝结。在包装内还可放入水分蒸发抑制剂、乙烯吸附剂、杀菌剂、蓄冷剂等,以有助于保鲜。 抑制采后的后熟与衰老
蔬菜从采收开始就进入衰老阶段,表现在细胞内核糖体数目减少,叶绿体开始崩溃,线粒体减少,细胞老化,不耐贮藏,易腐烂。衰老是和乙烯、赤霉素或其他激素在蔬菜中的含量以及在贮藏中的变化,蔬菜的生长发育状况及贮藏条件等有密切关系的。
要延缓蔬菜的衰老,延长贮藏期,一是选择健壮、生长良好的蔬菜进行贮藏;二是严格控制蔬菜在贮藏过程中乙烯和其他激素的含量,以利延缓蔬菜衰老;三是创造最佳贮藏条件,如控制温湿度、气体组成和配比等。
果菜类、结球类、根菜类等,在贮藏过程中有后熟作用。在后熟过程中常发生一系列生理生化变化,如淀粉水解为糖,有机酸含量降低,单宁物质开始凝固与氧化,原果胶分解为溶解于水的果胶,叶绿素发生分解,风味改善,产生芳香成分,质地由硬变软等。因此,利用这种后熟作用,可提早采收蔬菜,并在贮藏过程中创造适宜的条件,以保持其后熟力。常用的方法是降低贮藏室的温度,保持高湿度,适时通风,排除积累的乙烯和其他气体,抑制水解酶活动,延缓水解速度,防止营养物质大量消耗,就能达到抑制后熟作用、延长贮藏期的目的。 重视产地预冷与低温贮藏,减少贮菜损耗
由于各种蔬菜对温度的反应不一,确定蔬菜的贮藏温度,必须根据蔬菜本身对低温的适应性而定。例如,绿熟番茄贮藏温度为10-12℃、甜椒为7-9℃、黄瓜为10-13℃、萝卜为1-3℃、胡萝卜为0-1℃、马铃薯为3-5℃、菠菜为-6至0℃、菜花为0至0.5℃、洋葱为-3至0℃、大蒜为-1至0℃等。可见,大部分蔬菜的贮藏适宜低温在0℃左右。若低于这个温度,蔬菜也会受冻。蔬菜受冻后,组织和细胞受到机械力的破坏,产生脱水。有的蔬菜受冻后细胞受到破坏而死亡;解冻后汁液外流,失去商品、食用价值。但有的蔬菜耐寒力较强,如菠菜在-9℃还能复鲜,适于冻藏。 延缓物质转化与消耗,保持贮菜质量
产地预冷是蔬菜采后保鲜的关键一环,伴随蔬菜出口的发展,蔬菜产地预冷日益受到重视。预冷的作用是快速除去田间热,有效降低蔬菜自身的代谢水平,减少养分消耗,延缓衰老,延长蔬菜保鲜期。在高温下,延长从采收到预冷的时间会促进蔬菜衰老,大大缩短蔬菜保鲜期。低温能有效地抑制腐烂病菌的生长和活动,减少损耗,也是贮藏蔬菜的关键因素。蔬菜在产地预冷后,由冷藏集装箱运输进入流通,到销地后进入周转冷库或销售冷柜,能最大限度地保持蔬菜的品质,减少流通损耗。
蔬菜收获后物质积累停止,干物质不再增加,已经积贮的各种物质,逐渐消耗,或在酶的催化下,经转化、转移、分解和重组合,在组织和细胞形态、结构、特性等方面发生一系列变化。如大白菜经贮藏后味道变甜,质地柔软,绿色减褪。绿熟番茄硬而色绿,贮藏中逐渐脱绿而现出红色或**,果肉软化,酸度降低,使蔬菜风味、质地、营养价值、商品性及耐贮性、抗病性等均发生重大改变。
蔬菜颜色的转变,常常是后熟老化的标志。同时,蔬菜中维生素C在贮藏期间以不同速度逐渐减少。为此,延缓蔬菜营养物质的转化与消耗,是保持贮菜质量的关键之一,商业上采用降低呼吸作用,抑制后熟与衰老,创造最适贮藏条件和气体组成等,均能得到满意的结果。
蔬菜在贮藏过程中,各类物质的合成一水解的动态平衡是不断变化的。多数蔬菜在贮藏中合成过程逐渐减弱,水解过程不断加强,积累了简单的水解产物,从而刺激呼吸作用,有利于微生物侵染。果胶物质的转化降低了蔬菜的抗机械力性能。 提高耐藏性与抗病性
蔬菜的耐藏性是指经过一段时间贮藏后,食用价值和风味特点无显著降低,重量损耗小;抗病性是指抵抗腐烂病菌侵害的能力。两者是紧密联系、互为依存的,耐藏性强的蔬菜对腐烂病菌有较强的免疫力,反之较差。从蔬菜的特性而言,以营养器官为食用部分的蔬菜,如青菜、菠菜、芹菜、芥菜、茼蒿、苋菜、空心菜、苜蓿等,含水量多,酶种类和数量多,呼吸代谢旺盛,物质分解快,大多不耐贮藏,抗病性差。幼嫩的黄瓜、丝瓜、菜豆、辣椒、茄子也不耐贮藏,而老熟的冬瓜、南瓜较耐贮藏。以营养积累器官为食用部分的蔬菜--块茎、块根、叶球、鳞茎类亦较耐贮藏,其中晚熟种比早熟种耐贮藏,抗病性强,人们都需知道这些知识。
(1)临界低温高湿保鲜
临界点低温高湿贮藏的保鲜作用体现在两个方面:第一,水果在不发生冷害的前提下,采用尽量低的温度可以有效地控制果蔬在保鲜期内的呼吸强度,使某些易腐烂的水果品种达到休眠状态;第二,采用相对高湿的环境可以有效地降低水果水分蒸发,减少失重。
从原理上说,临界点低温高湿贮藏既可以防止水果在保鲜期内的腐烂变质,又可抑制水果衰老,是一种较为理想的保鲜手段。
(2)细胞间水结构化气调保鲜
通过结构化水技术可使果蔬组织细胞间水分参与形成结构化水,使整个体系中的溶液粘度升高,从而产生下面两个效应:第一,酶促反应速率将会减慢,可望实现对有机体生理活动的控制;第二,水果水分蒸发过程受抑制。这为植物的短期保鲜贮藏提供了一种全新的原理和方法。
有研究者用氙气制备甘蓝、花卉的结构化水,并对其保鲜工艺进行了探索,获得了较为满意的保鲜效果。但使用高纯度氙气成本太高,研究者往往通过惰性气体的混合加压来另寻保鲜方法,以降低成本。
(3)臭氧气调保鲜
臭氧是一种强氧化剂,又是一种良好的消毒剂和杀菌剂,既可杀灭消除水果上的微生物及其分泌的毒素,又能抑制并延缓水果有机物的水解,从而延长水果贮藏期。臭氧自1785年发现以来,作为一种气体杀菌剂广泛应用在食品、运输、贮存、自来水生产等领域。
臭氧气调保鲜是近年来国内开发的保鲜新技术,研究者利用此技术对易腐烂的荔枝进行保鲜取得了一定效果。其保鲜作用体现在3个方面:第一,消除并抑制乙烯的产生,从而抑制水果后熟速度;第二,有一定的杀菌作用,可防止水果霉变腐烂;第三,诱导水果表皮的气孔收缩,可降低水果的水分蒸发,减少失重。
(4)低剂量辐射预处理保鲜及紫外线保鲜
辐射保鲜主要利用钴-60、铯-137发出的γ射线,以及加速电子、X-射线穿透有机体时使其中的水和其他物质发生电离,生成游离基或离子的原理,对散装或预包装的水果起到杀虫、杀菌、防霉、调节生理生化等效应,可以替代乙烯、二溴化物、溴甲烷以及环氧乙烷等化学试剂。
新鲜水果的辐射处理选用相对低的剂量,一般小于3 kGy,否则容易使水果变软并损失大量的营养成分。
低剂量辐射预处理保鲜可以和其它技术复合使用,例如与冷冻、漂烫等技术相结合可以减少辐射保鲜所要求的辐射剂量。通过热水浸渍或蒸汽(温度为50~ 55℃)加热5 min,可以产生更好的保鲜效果这项技术在柑橘、桃、樱桃保鲜过程中广泛应用。
紫外线保鲜技术具有安全、环境好、高效等特点,紫外线波长为2600 A时具最大杀菌效果。
(5)涂膜保鲜
这种方法通过包裹、浸渍、涂布等途径覆盖在食品表面或食品内部异质界面上,提供选择性的阻气、阻湿、阻内容物散失及隔阻外界环境的有害影响、抑制呼吸,延缓后熟衰老,抑制表面微生物的生长,提高贮藏质量等多种功能,从而达到食品保鲜,延长其货架期的目的。
目前,广泛应用于水果保鲜的涂膜材料有糖类、蛋白质、多糖类蔗糖脂、聚乙烯醇,单甘脂以及多糖、蛋白质和脂类组成的复合膜。
(6)高压保鲜
高压保鲜的作用原理主要是在贮存物上方施加一个小的由外向内的压力,使贮存物外部大气压高于其内部蒸汽压,形成一个足够的从外向内的正压差,一般压力为2500-4000 个大气压。这样的正压可以阻止水果水分和营养物质向外扩散,减缓呼吸速度和成熟速度,故能有效地延长果实贮藏期。
此外,高压保鲜技术与冷藏技术结合使用效果更佳,可使葡萄在5℃下保存5个月,草莓在8℃下保存30天。
(7)基因工程技术保鲜
主要通过减少水果生理成熟期内源乙稀的生成以及延缓水果在后期成熟过程中的软化来达到保鲜目的。苹果、桃、 香蕉、番茄等有呼吸高峰的水果在成熟过程中会自动促进乙烯的释放,通过不同的途径控制植物中乙烯的生成。
目前,科学家已找到产生乙烯的基因,如果关闭这种基因,就可减慢乙烯释放的速度,从而延缓果实的成熟,达到水果在室温下延长货架期的目的。
延缓水果的软化可以通过抑制聚半乳糖醛酸酶、果胶酶等降解组织细胞完整性的酶基因来实现。因此利用 DNA的重组和操作技术来修饰遗传信息,或用反义RNA技术来抑制成熟基因,可以推迟水果衰老,延长保鲜期。
(8)细胞膨压调控保鲜
通过温度、相对湿度、表面控制程度、通风气流速度等有关的热动力学特性调控技术以及相应的组织膨压变化的测试技术,可维持水果细胞膨压的完好,实现其质地的调控保鲜。
有学者已经进行了苹果、梨的组织膨压调控保鲜,取得了较好的中长期保鲜效果。
(9)气调保鲜
利用调整环境气体成分延长食品贮藏寿命和货架寿命。自发明苹果气调保鲜以来,气调保鲜在世界各地得到普遍的推广,并成为工业发达国家水果保鲜的重要手段,也是今后水果保鲜的重要趋势。
根据对已经建立起来的环境气体是否具有再调整作用,气调保鲜又分为CA (Controlled Atmosphere Storage)和 MA (Modified Atmoshphere Storage)两种形式。CA是在气调贮藏期间,选用的调节气体的浓度一直保持恒定;MA是最初在气调系统中建立起预定的调节气体浓度,在随后的贮藏期间不再受到人为调整。MA技术是从水果腐烂的呼吸机理出 发,通过抑制呼吸作用的快速进行以及抑制内源乙烯的产生,从而达到保鲜的目的。
MA能延长食品货架期己为世人认可多年,作为无公害保鲜手段,在国际上备受关注。在国外,低氧CA (Controlled Atmosphere)技术或超低氧藏是果蔬采后CA应用技术的新突破。
现代消费者对产品方便、新鲜以及有益健康的要求,将会进一步拓宽MA 的应用范围。
(10)综合保鲜
单一的保鲜方法均存在各自的弱点、保鲜效果均不理想,或不能完全解决问题。因此综合保鲜的观点已日益被接受,人们已逐渐认识保鲜工作不是仅仅采后才做的工作,而在采前、摘过程采取足够的措施,才能达到保鲜的目的。
本文由用户上传,如有侵权请联系删除!转转请注明出处:https://nongye.s666.cn/js/5_6571181137.html